在本文中,我们考虑使用Palentir在两个和三个维度中对分段常数对象的恢复和重建,这是相对于当前最新ART的显着增强的参数级别集(PALS)模型。本文的主要贡献是一种新的PALS公式,它仅需要一个单个级别的函数来恢复具有具有多个未知对比度的分段常数对象的场景。我们的模型比当前的多对抗性,多对象问题提供了明显的优势,所有这些问题都需要多个级别集并明确估计对比度大小。给定对比度上的上限和下限,我们的方法能够以任何对比度分布恢复对象,并消除需要知道给定场景中的对比度或其值的需求。我们提供了一个迭代过程,以找到这些空间变化的对比度限制。相对于使用径向基函数(RBF)的大多数PAL方法,我们的模型利用了非异型基函数,从而扩展了给定复杂性的PAL模型可以近似的形状类别。最后,Palentir改善了作为参数识别过程一部分所需的Jacobian矩阵的条件,因此通过控制PALS扩展系数的幅度来加速优化方法,固定基本函数的中心,以及参数映射到图像映射的唯一性,由新参数化提供。我们使用X射线计算机断层扫描,弥漫性光学断层扫描(DOT),Denoising,DeonConvolution问题的2D和3D变体证明了新方法的性能。应用于实验性稀疏CT数据和具有不同类型噪声的模拟数据,以进一步验证所提出的方法。
translated by 谷歌翻译
We investigate algorithmic progress in image classification on ImageNet, perhaps the most well-known test bed for computer vision. We estimate a model, informed by work on neural scaling laws, and infer a decomposition of progress into the scaling of compute, data, and algorithms. Using Shapley values to attribute performance improvements, we find that algorithmic improvements have been roughly as important as the scaling of compute for progress computer vision. Our estimates indicate that algorithmic innovations mostly take the form of compute-augmenting algorithmic advances (which enable researchers to get better performance from less compute), not data-augmenting algorithmic advances. We find that compute-augmenting algorithmic advances are made at a pace more than twice as fast as the rate usually associated with Moore's law. In particular, we estimate that compute-augmenting innovations halve compute requirements every nine months (95\% confidence interval: 4 to 25 months).
translated by 谷歌翻译
基于变压器的语言模型利用注意机制在几乎所有自然语言处理(NLP)任务中进行大量绩效改进。在其他几个领域也广泛研究了类似的关注结构。尽管注意力机制可显着增强模型的性能,但其二次复杂性阻止了长序列的有效处理。最近的工作着重于消除计算效率低下的缺点,并表明基于变压器的模型仍然可以在没有注意力层的情况下达到竞争结果。一项开创性的研究提出了FNET,该研究将注意力层取代了变压器编码器体系结构中的傅立叶变换(FT)。 FNET通过消除注意机制的计算负担来加速训练过程,在加速训练过程的同时,实现了有关原始变压器编码器模型的竞争性能。但是,FNET模型忽略了FT的基本特性,可以利用经典信号处理,以进一步提高模型效率。我们提出了不同的方法,以有效地部署FT在变压器编码器模型中。我们提出的架构具有较少的模型参数,较短的培训时间,较少的内存使用情况以及一些额外的性能改进。我们通过对共同基准的广泛实验来证明这些改进。
translated by 谷歌翻译
随机且未知的散射介质背后的对象的分类为计算成像和机器视野字段的具有挑战性的任务。最新的基于深度学习的方法证明了使用图像传感器收集的扩散器延伸模式对对象进行分类。这些方法需要使用在数字计算机上运行的深神经网络进行相对大规模的计算。在这里,我们提出了一个全光处理器,使用单个像素检测到的宽带照明通过未知的随机相扩散器直接对未知对象进行分类。使用深度学习进行了优化的一组传播衍射层,形成了一个物理网络,该物理网络全面地绘制了随机扩散器后面输入对象的空间信息,以进入通过单个像素在输出平面上检测到的输出光的功率谱,衍射网络。我们在数值上使用宽带辐射通过随机新扩散器对未知手写数字进行分类,在训练阶段从未使用过,并实现了88.53%的盲目测试准确性。这种通过随机扩散器的单像素全光对象分类系统基于被动衍射层,该层可以通过简单地缩放与波长范围的衍射范围来缩放衍射特征,从而在电磁光谱的任何部分中运行,并且可以在电磁光谱的任何部分工作。这些结果在例如生物医学成像,安全性,机器人技术和自动驾驶中具有各种潜在的应用。
translated by 谷歌翻译
分布式深度学习框架(例如分裂学习)在培训深神经网络的计算成本以及一组数据持有人的集体数据的隐私性利用方面为巨大的好处。特别是,通过将神经网络分配在客户端和服务器之间,以便客户端计算初始图层集,并且服务器计算其余的。但是,此方法引入了试图窃取客户端数据的恶意服务器的唯一攻击向量:该服务器可以将客户端模型引导到学习其选择的任何任务,例如倾向于输出易于可逆值。有了一个已经提出的具体示例(Pasquini等,CCS '21),这种训练式攻击攻击构成了分裂学习客户的数据隐私的重大风险。在本文中,我们提出了SplitGuard,该方法可以通过这种方法来检测该方法是否是通过训练式攻击攻击的目标。我们通过实验评估方法的有效性,将其与潜在的替代方案进行比较,并详细讨论与其使用相关的各个点。我们得出的结论是,Splitguard可以有效地检测训练式攻击,同时最大程度地减少对手回收的信息量。
translated by 谷歌翻译
培训深度神经网络通常会迫使用户在分布式或外包环境中工作,并伴随着隐私问题。 Split学习旨在通过在客户端和服务器之间分配模型来解决这一问题。该方案据说提供了隐私,因为服务器无法看到客户端的模型和输入。我们表明,通过两次新颖的攻击,这是不正确的。 (1)我们表明,只有掌握客户端神经网络体系结构知识的诚实但充满感染的分裂学习服务器可以恢复输入样本并获得与客户端模型的功能相似的模型,而无需检测到。 (2)我们证明,如果客户端仅隐藏模型的输出层以“保护”专用标签,则诚实但有趣的服务器可以完全准确地推断出标签。我们使用各种基准数据集测试我们的攻击,并反对提议的隐私增强扩展以分裂学习。我们的结果表明,明文分裂学习可能会带来严重的风险,从数据(输入)隐私到知识产权(模型参数),并且不仅仅提供虚假的安全感。
translated by 谷歌翻译